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Abstract

Reaction-diffusion systems produce a variety of patterns such as spots, labyrinths, and rotating spirals. Circular
spots may be stationary or unstable to oscillating motion. The oscillations are sometimes steady but may lead to col-
lapsing or infinitely expanding spots. Using a singular perturbation technique we derive a set of ordinary differential
equations for the dynamics of circular spots. These equations are considerably simpler to study than the underlying
reaction-diffusion model and quantitatively reproduce the same dynamics.
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1 Introduction

The discovery of replicating spots, first in models [1] and then in chemical experiments [2, 3] sparked renewed interest
in the formation of localized reaction-diffusion patterns. In addition to replicating spots, oscillating circular spots have
also been found in the Ferrocyanide-Iodate-Sulfite reaction [4]. One kind of spot is formed from interactions with
the circular boundary of the chemical reactor. It may be stationary or become unstable to oscillating (or breathing)
motion. Away from the boundary another type of oscillating circular spot may exist [5]. This spot is not significantly
influenced by the reactor boundary and exists as a single localized structure.

Theoretical studies of reaction-diffusion models have addressed static and oscillatory instabilities of spots [6, 7],
spot splitting [8, 9, 10], and the drifting motion of spots with global coupling [11]. In this article we derive a set
of ordinary differential equations to describe the dynamics of circular spots in a two-dimensional reaction-diffusion
system. This pair of equations, for an order parameter related to the front speed, and for the curvature of a circular
front, describe stationary and oscillating spots and predict the collapse or infinite expansion of unstable spots. This
analysis is restricted to the dynamics of circular spots and does not predict instabilites to transverse perturbations that
may deform the perfect circular shape.

2 Reaction-Diffusion model

The model we consider is an activator-inhibitor reaction-diffusion system describing a bistable medium. Models of
this type have been studied in various physical and chemical contexts [12, 13, 14, 15, 16, 17]. The equations, for real
scalar fieldsu andv, are

ut = ε−1(u− u3 − v) + δ−1∇2u , (1)

vt = u− a1v − a0 +∇2v .

The subscriptt denotes the partial time derivative and∇ is the two-dimensional Laplacian. Fora1 > 1 anda0 = 0
the system (1) has two stationary uniform states,(u±, v±) =

(
±

√
1− 1/a1,±a−1

1

√
1− 1/a1

)
. For smalla0 the

system is still bistable but the parity symmetry(u, v)→ (−u,−v) is broken.
In addition to the spatially uniform solutions there are also front solutions connecting them. These fronts may

be planar (one-dimensional), circular (spots), or irregular (for example in a labyrinth pattern). For planar fronts we
consider front solutions that connect(u+, v+) at x = −∞ to (u−, v−) at x = ∞ and are uniform in they direction.
The number and type of these front solutions is determined by the two parametersε andδ. Forη > ηc = 3/2

√
2q3,

whereη =
√

εδ andq2 = a1 + 1/2, a single stable stationary (Ising) front solution exists. This solution loses stability
in a pitchfork bifurcation, atη = ηc, to a pair of counterpropagating (Bloch) front solutions [16, 17, 18, 19] as shown
in Fig. 1.

In the vicinity of the pitchfork front bifurcation (also called the Nonequilibrium Ising-Bloch, or NIB, bifurcation)
small perturbations may influence the front solutions in dramatic ways. In particular, perturbations, such as the cur-
vature of a front, may cause a transition between the counterpropagating solution branches (forη < ηc in Fig. 1)
[10, 20]. Periodic front transitions result in oscillating, or breathing, motion of the fronts. In the next section we show
how to derive order parameter equations that describe these transitions.

3 Equations for the dynamics of circular fronts

To derive equations for the motion of circular fronts (spots), the first step is to transform into polar coordinates,
r = ρ− ρf (t), that move with the front. In this frame, and assuming the radius of curvatureρf is much larger than the
front width, equations (1) are

ut − (ρ̇f + (δρf )−1)ur = ε−1(u− u3 − v) + δ−1urr , (2)

vt − (ρ̇f + ρ−1
f )vr = u− a1v − a0 + vrr ,
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Figure 1: The NIB (or nonequilibrium Ising-Bloch) bifurcation whena0 = 0. The pitchfork diagram represents the
speed of front solutionsvs the parameterη. For η > ηc, the Ising front is the single solution andvf , the order
parameter representing the value of thev field at the front positionu = 0, is zero. Beyond the bifurcation,η < ηc, a
pair of counterpropagating Bloch fronts appears.

where the dot overρf denotes the derivative with respect tot. In the following we confine ourselves to the parameter
region ε � 1, δ ∝ ε−1 and we chooseδ values such thatεδ ∼ O(η2

c ). The front solution,u(r, t), v(r, t), is
characterized by a strong variation of theu field over a distance of order

√
µ =

√
ε/δ, and singular perturbation

methods can be used.
Stretching the spatial coordinate,z = r/

√
µ, to expand this region, equations (2) become

ε (ut − żfuz + (δzf )−1uz) = u− u3 − v + uzz , (3)

µ (vt − żfvz + z−1
f vz − u + a1v) = vzz ,

wherezf = ρf/
√

µ and we recall thatµ ∝ ε2. Expanding inε

u = u0 + εu1 + ε2u2 + ... ,

v = v0 + εv1 + ε2v2 + ... ,

and inserting into (3) we find at order unity the front solution

u0 = − tanh(z/
√

2), v0 = 0 .

Collecting terms of orderε gives

Lu1 = v1 − żfu0z − (δzf )−1u0z , L = ∂2
z + 1− 3u2

0 , (4)

wherev1 is a yet undetermined function of time. Since

Lu0z = 0 ,

solvability of (4) requires

żf + (δzf )−1 = − 3√
2
v1(t) .
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The narrow front region becomes infinitely thin in the limitε → 0. Therefore,v(t) may be associated with the value
of v(r, t) at the front position, that isv(0, t). With this notation the leading order relation is

ρ̇f +
1

δρf
= − 3

η
√

2
v(0, t) . (5)

Away fromρf , u− u3− v ∼ O(ε), andu varies on the same time and length scales asv. Going back to equations
(2) we find at order unity

vt − ρ̇fvr + ρ−1vr = u+(v)− a1v − a0 + vrr , r ≤ 0 , (6)

vt − ρ̇fvr + ρ−1vr = u−(v)− a1v − a0 + vrr , r ≥ 0 ,

whereu±(v) are the outer solution branches of the cubic equationu − u3 − v = 0. Fora1 sufficiently large we may
linearize the branchesu±(v) aroundv = 0

u±(v) ≈ ±1− v/2 . (7)

Substituting the linearization (7) and the relation from the inner problem (5) into (6) produces the free boundary
problem

vt + q2v − vrr = 1− 3
η
√

2
v(0, t)vr + (1− δ−1)vr/ρf − a0

v(−∞, t) = v+ ≈ q−2

 r ≤ 0 ,

vt + q2v − vrr = −1− 3
η
√

2
v(0, t)vr + (1− δ−1)vr/ρf − a0

v(∞, t) = v− ≈ −q−2

 r ≥ 0 ,

(8)

[v]r=0 = [vr]r=0 = 0 , (9)

where the square brackets in (9) denote jumps across the free boundary.
Equations (8) can be solved by assuming that the system is near the front bifurcation and expanding in powers

of the front speedc. If we require that the last two terms (a0 and the term withρf ) in Eqns. (8) are of orderc3 this
expansion gives a series of equations that produce as a compatibility condition the order parameter equation

v̇f =
√

2
qη2

c

(ηc − η)vf −
3

4η2
c

v3
f −

2
3q

(1− δ−1)
ρf

− 4
3
a0 . (10)

wherevf (t) = v(0, t), is the value of the inhibitor at the front positionρf (t). The order parametervf is related to the
speed of a front (see Fig. 1).

The full details of the solution technique can be found in Ref. [21].

4 Collapsing, expanding, and oscillating spots

Writing equations (5) and (10) terms of the curvatureκ = ρ−1
f gives the equations

v̇f =
√

2
qη2

c

(ηc − η)vf −
3

4η2
c

v3
f −

2
3q

(1− δ−1)κ− 4
3
a0 , (11)

κ̇ =
3

η
√

2
vfκ2 + δ−1κ3 ,

that describe the dynamics of large circular spots. Consider first the fixed point solutions obtained by the intersections
of the linear nullclinesκ = 0 andκ = −(3δ/η

√
2)vf of the bottom equation in (11) with the cubic nullcline of the

top equation in (11). The solutions corresponding toκ = 0 describe planar fronts propagating at constant velocities.
Solutions with positive and negativevf values pertain to down states invading up states and up states invading down
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states, respectively. The number ofκ = 0 solutions varies withη. Below the front bifurcation, [η > ηc(a0)], there is a
single intersection point representing an Ising front as shown by the thin lines in Fig. 2a and Fig. 2b. Beyond the front
bifurcation, [η < ηc(a0)], two more intersection points appear corresponding a stable and unstable pair of planar front
solutions (Fig. 2c). The fixed point solutions forκ 6= 0 represent a circular fronts. Fora0 < 0 they describe spots of
up an state domain and fora0 > 0 spots of a down state domain. Forδ > 1, depending on the choice ofε, these fixed
points may or may not be stable. Forδ < 1, all theκ 6= 0 fixed points areunstable.

Fig. 2 shows three different possibilities for the dynamics of circular fronts. The thick trajectories represent
dynamics computed by numerical solution of the coupled equations (11). The initial conditions correspond to a large
shrinking up state spot. Far into the Ising regime (Fig. 2a). the initial spot converges to a stationary spot. Moving
closer to the front bifurcation and past a criticalη value,ηH > ηc(a0), a Hopf bifurcation to a breathing spot occurs
(Fig. 2b). Crossing the front bifurcation,η < ηc(a0), the spot rebounds, i.e. the shrinking spot reaches a minimal
size and expands again indefinitely (Fig. 2c). For larger|a0|, there is another possibility for the dynamics of spots.
In this case, shown in Fig. 3, the amplitude of oscillations grows in time until the spot eventually collapses as the
curvature diverges to infinity. Note that the equations (11) are not valid for studying the final collapse of the spot since
the curvature is high and the equations are not valid then. They do, however, predict the onset of collapse.

All three dynamical behaviors discussed above have been observed in direct simulations of (1). The quantitative
accuracy of the order parameter equations was tested by computing numerical solutions to the circularly symmetric
version of equations (1)

ut = ε−1(u− u3 − v) +
δ−1

r
ur + δ−1urr , (12)

vt = u− a1v − a0 +
1
r
vr + vrr .

and comparing them to solutions to equations (11) for spot dynamics. Spot solutions of (12) produce the same quali-
tative behavior as the pair of coupled equations for the spot dynamics. When the parameters are chosen to satisfy the
assumptions made in the derivation of (11), there is also quantitative agreement between the two solutions. Fig. 4
shows the curvature of an oscillating spot as a function of time computed using both equations (11) and (12). The two
solutions agree within an accuracy of approximately 1% for the amplitude and 2% for the phase.

5 Conclusion

We have shown how the dynamics of circular spots in a reaction-diffusion system can be studied through the use
of a pair of ordinary differential equations. These equations predict collapsing, expanding and oscillating spots.
In addition to the oscillatory instability spot solutions may also be unstable to transverse perturbations [6, 22, 23].
Numerical solutions of the fully two-dimensional model (1) show that for the parameters of Fig. 4 spots are unstable
and form nonuniformly curved fronts leading to a labyrinthine pattern. Since the order parameter equations derived
here apply only for the case when the spots do not break perfect circular symmetry, for this choice of parameters they
only capture the dynamics of the circular spot during the initial evolution. Order parameter equations for the dynamics
of nonuniformly curved fronts are discussed in Ref. [24].
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Figure 2: Three types of solutions to the order parameter equations (11) starting with initial conditions representing
a large shrinking spot. The thin lines are the isoclines and the thick lines are numerically computed trajectories. (a)
Convergence to a stationary spot (ε = .0063). (b) An oscillating spot (ε = .006). (c) Spot rebound and expansion of
the spot to infinite size (ε = .0052). Parameters:a1 = 4.0, a0 = −0.01, andδ = 2.0.
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Figure 3: A trajectory of the order parameter equations (11) for a spot that oscillates with growing amplitude until
collapse (the curvatureκ diverges to infinity). Parameters:a1 = 4.0, a0 = −0.1, ε = 0.006, andδ = 2.0.

Figure 4: An oscillating circular spot solution. The solid line is the solution of the order parameter equations (11), and
the diamonds represent the spot curvature vs time from the numerical solution to the circularly symmetric equations
(12). The equation parameters areε = 0.006, δ = 2.0, a1 = 4.0, a0 = −0.01.
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